6,428 research outputs found

    Specification of a NAVSTAR Global Positioning System (GPS) receiver for a differential GPS ground system

    Get PDF
    One step towards the successful completion of a functional ground unit for the Differential Global Positioning System (DGPS) will be in choosing a currently available GPS receiver that will accurately measure the propagation times of the satellite signals and have the capability to be electrically interfaced with and controlled by a Digital Equipment Corporation (DEC) PDP-11/34A computer. The minimum requirements and characteristics of a NAVSTAR Global Positioning System (GPS) receiver are described. The specific technical specifications addressed include data accuracies and resolutions, receiver interface/external control, enclosure dimensions and mounting requirements, receiver operation, and environmental specifications

    A Loran-C prototype navigation receiver for general aviation

    Get PDF
    Prototype equipment was developed for flight evaluation which provides enroute navigation in both latitude-longitude and rho-theta coordinates. The nonprecision approach capabilities of this equipment was evaluated. The antenna/preamplifier coupler, the RF processor, tracking loop hardware, tracking loop software, and the video output are discussed. Laboratory and flight test results are evaluated

    Constraining the Environment of CH+ Formation with CH3+ Observations

    Full text link
    The formation of CH+ in the interstellar medium has long been an outstanding problem in chemical models. In order to probe the physical conditions of the ISM in which CH+ forms, we propose the use of CH3+ observations. The pathway to forming CH3+ begins with CH+, and a steady state analysis of CH3+ and the reaction intermediary CH2+ results in a relationship between the CH+ and CH3+ abundances. This relationship depends on the molecular hydrogen fraction, f_H2, and gas temperature, T, so observations of CH+ and CH3+ can be used to infer the properties of the gas in which both species reside. We present observations of both molecules along the diffuse cloud sight line toward Cyg OB2 No. 12. Using our computed column densities and upper limits, we put constraints on the f_H2 vs. T parameter space in which CH+ and CH3+ form. We find that average, static, diffuse molecular cloud conditions (i.e. f_H2>0.2, T~60 K) are excluded by our analysis. However, current theory suggests that non-equilibrium effects drive the reaction C+ + H_2 --> CH+ + H, endothermic by 4640 K. If we consider a higher effective temperature due to collisions between neutrals and accelerated ions, the CH3+ partition function predicts that the overall population will be spread out into several excited rotational levels. As a result, observations of more CH3+ transitions with higher signal-to-noise ratios are necessary to place any constraints on models where magnetic acceleration of ions drives the formation of CH+.Comment: 7 pages, 3 figures, 2 tables, accepted for publication in Ap
    • …
    corecore